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Semicircular Ridges in Rectangular Waveguides®
J. VAN BLADEL} axp O. VON ROHR JR.}

Summary—The two-dimensional Helmholtz equation is solved
in a rectangle having two semicircular projections in the center of its
broad faces. More particularly, the lowest two eigenvalues are deter-
mined for Neumann’s boundary condition, and the lowest eigenvalue
for Dirichlet’s boundary condition. The results are of interest in
various fields of physics, such as vibrations of a membrane, but are
of particular importance in the study of waveguide propagation. The
latter application is stressed in the article, in accordance with the
practical importance of ridged waveguides.

INTRODUCTION

HE LOWEST mode of a rectangular waveguide,
Ti.e., the TE;, mode, has a cutoff frequency f; equal

to ¢/2a, where ¢ is the velocity of light in the
dielectric filling the guide (see Fig. 1). The next to
lowest mode is either the TEy mode, with cutoff fre-
quency ¢/2b, or the TEy, with cutoff frequency c/a, the
choice between these two modes being determined by
the aspect ratio b/a of the cross section. At most, the
ratio of the lowest two cutoff frequencies (termed mode
separation factor) is seen to be equal to two. Insertion
of rectangular ridges has the following effects:!:2

1) A decrease in the lowest cutoff frequency. This is
shown in Fig. 3, where, as in the rest of the article,
frequencies are measured in terms of ¢/2a. The
penetration of the ridge is expressed by the inser-
tion coefficient 7, a quantity which is defined as
2d/b for the rectangular shape and 2R/b for the
semicircular shape. In particular, 7 takes the value
one when the ridges touch each other. It is seen
that the presence of the ridges makes the wave-
guide more compact for any given value of the
lowest cutoff frequency.

2) An increase in mode separation, as seen in Fig. 6.
Consequently, “one-mode” propagation is possible
over a broader band of frequencies. This important
property has led to the use of ridged waveguide in
airborne weather-radar, where the two wave-
lengths of importance for precipitation detection,
viz., 3.2 cm and 5.6 cm, must be alternatively ac-
commodated by the same waveguide run, excite
a single mode, and still lie sufficiently far from cut-
off values.

3) An increase in power attenuation, as evidenced by
the two isolated points in Fig. 7. This is objection-
able for energy transmission purposes, although
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Fig. 1—Rectangular and semicircular ridges.

).

desirable in the design of certain microwave
devices.!

4) An increase of the maximum electric field intensity
in the cross section, namely at the protruding
corners of the ridges. This lowers the maximum
power which can be transmitted without break-
down. To counteract this effect, corners of the
ridge are slightly rounded off in practice. The
question then naturally arises as to what would
be the effect of rounding off much more drastically,
i.e., what desirable and undesirable properties of
the rectangular ridge would result when one goes
over to the “cornerless” semicircular ridge. It is
the purpose of the present paper to give an answer
to that question.

NumericaL CALCULATIONS

The structure and properties of a waveguide mode are
determined by solving the following two-dimensional
eigenvalue problems:®

3S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley & Sons, Inc., New York, N.Y., 2nd ed., ch.
8; 1953.
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TE modes:V?¢ 4+ k% = 0 with
O¢

— = 0 on cross section contour (1)
on

TM modes: V2% + k% = 0 with

¢ = 0 on cross section contour. (2)

To each eigenvalue k2 and eigenfunction ¢ corresponds
a different mode, the cutoff frequency of which is equal
to ¢k/2wr. The eigenvalue problem of the present article
has been solved by classical difference equation meth-
ods.* Iteration methods have been found more suitable
than relaxation methods for the purpose. In brief, the
technique consists of starting with a small ridge radius,
a coarse net, and a distribution ¢° of net point values
corresponding to the unperturbed eigenfunction (z.e.,
relative to the rectangular boundary of same aspect
ratio, but without ridge). A first estimate of %% is ob-
tained by the Rayleigh quotient

— 20 "%

2 (¢9)?
Better values of ¢ are obtained by going around the net
and replacing the initial values ¢ by (see Fig. 2).
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Fig. 2—Points of the nets used in the iteration method.
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for a boundary point.

From this new set of values, k2 is again computed from
(3), and the process is repeated until 2% converges. One
then goes over the finer nets, and computes the corre-
sponding values of k2. The final nets, in the present
work, contained some 400 points on the average.s A
typical sequence of values for k2 is 11.1/a2, 8.3/a2, and

4 D. N. deG. Allen, “Relaxation Methods,” McGraw-Hill Book
Co., Inc., New York, N. Y., Ist ed., ch. 5, 6, and 12, 1954.

§ For more details, see O. Von Rohr’s thesis, submitted to the
Sever Inst. of Tech. in partial fulfillment of the requirements for the
degree of Master of Science in electrical engineering.
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Fig. 3—Cutoff frequency of the lowest mode as a function of the
ridge penetration. The dashed curve is relative to a rectangular
ridge. The insert shows the lines of force of the electric field in the
waveguide cross section.
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Fig. 4—Cutoff frequency of the second lowest mode as a function of
ridge penetration. The inserts show the lines of force of the elec-
tric field in the waveguide cross section. The dashed curve, which
represents the third lowest mode for 5/ =0.50, has been added to
allgw /mterpolatmn of the TEjy characteristics between b/a =0.50
and b/a
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7.7/a® for nets containing respectively 19, 97, and 425
points. The extrapolated value, in this particular exam-
ple, was taken to be 7.6/a The results of the computa-
tions are shown in Figs. 3 to 6. Each curve contains five
calculated points, and the over-all accuracy is believed
to be better than 2 per cent, which is satisfactory for
general engineering purposes. Computations were made
on a desk calculator, in the absence of a suitable auto-
matic computer. Interest is focused on the lowest two
TE modes, which determine the mode separation factor.
However, cutoff frequencies of the lowest TM mode
have been added, both because it was found desirable
to check whether they remain higher than those of the
investigated TE modes, and also because they repre-
sent the fundamental frequency of the clamped mem-
brane having the contour depicted in the lowest part of
Fig. 1. It will be noticed from Fig. 4 that the TE,, mode
is the second lowest mode for small aspect ratios. This
characteristic property was also displayed by the ridge-
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Fig. 5-—Cutoff frequency of the lowest TM mode as a function of

ridge penetration. The insert shows the lines of force of the
electric field in the waveguide cross section.
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Fig. 6-~Mode separation factor as a function of insertion coefficient.
The dashed curve, added for comparison purposes, is relative to
a rectangular ridge.

less guide. The value of &/a, however, at which the
transition from TEq to TEg takes place, is no longer
0.5, but is somewhat smaller. Notice also from Fig. 6
that the mode separation is optimum for an aspect ratio
of 0.4 approximately.

The knowledge of the eigenfunction ¢ relative to the
lowest mode makes it possible, by using classical for-
mulas,® to compute the attenuation and the power
handling capacity of the guide. The results are shown
in Figs. 7 and 8. It has been found useful, for comparison
purposes, to display the attenuation constant relatively
to that of a ridgeless rectangular guide of identical
material, aspect ratio, and cutoff frequency. The values
of the attenuation constant of the latter guide can be
found in the literature.® The relative power handling
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Fig. 7—Attenuation coefficient in terms of the attenuation coefficient
relative to a ridgeless waveguide of identical aspect ratio and cut-
off frequency. The curves are relative to the lowest mode. The
two isolated points refer to the relative attenuatioa for a rectangu-
lar ridge (S/e=0.25, b/a=0.5) of insertion coefficients 0.5 and
0.75 respectively.
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Fig. 8—Decrease of power handling capacity with ridge penetration.

capacity curves indicate that, as the ridge penetration
increases, the lowest power level which will cause hreak-
down (i.e., create, somewhere in the cross section, an
electric field equal to the breakdown value) becomes
smaller and smaller.

Comparison Between Ridges

The best over-all properties, for a rectangular ridge
and an aspect ratio of 0.5, are obtained? for s/a =0.25
(Fig. 1). An inspection of Fig. 6 indicates that such a
rectangular ridge ensures a better mode separation than
the semicircular ridge, for any given insertion coefficient.
This is not surprising, for the rectangular ridge covers a
larger proportion of the cross section than its semi-
circular counterpart. The comparison, however, should
be made on a mode separation basis. For a given mode
separation factor, the semicircular ridge is evidently
greatly superior as far as power handling capacity is
concerned. The latter is actually zero for a rectangular
ridge (that is, if we take maximum local electric field as
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a criterion). The relative attenuations are roughly
identical for both ridges, as can easily be checked by
considering the two representative points of Fig. 7. It
consequently appears that the semicircular ridge has all
the favorable features of its rectangular counterpart,
and shows, in addition, considerable improvement in
power handling capacity.

Experimental Verification

To obtain an idea of the accuracy of the curves, it was
decided to check two points where the accuracy was ex-
pected to be low. These points were relative to the
TEn mode (the nets of which contained, in general,
fewer points than for the TE;, mode) and to a wave-
guide with aspect ratio b/¢=0.466 (namely the RG-
49/U guide). The value of the cutoff wavelength, for
insertion coefficients of 0.5 and 0.75, was found, by in-
terpolation from the curves, to be 4.15 cm and 3.95 cm
respectively. The measured values were 4.25 cm and
4.08 cm, off by 2 or 3 per cent. This discrepancy is within
the limits of the expected 2 per cent over-all accuracy, if
one takes into account the additional error introduced
by the interpolation process.

APPENDIX

The following details about the computation method
are of interest:

1) Each mode has certain symmetry or antisymmetry
properties with respect to the Ox and 0y axes (Fig. 1).
The TE, mode, for example, is symmetrical for Ox, and
antisymmetrical for 0y. These properties allow compu-
tations to be restricted to a quarter of the cross section.

2) The boundary condition ¢=0 is imposed by
setting ¢+ =¢2»=0 in (5). The condition d¢/dr =0 is
imposed by the use of Fox’s method,® which consists of
computing the value at ¢’ (see Fig. 2) with the formula

6 .. Fox, “Solution by relaxation methods of plane potential
problems with mixed boundary conditions,” Quart. Appl. Math., vol.
2, pp. 251-257; October, 1944.
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relative to an ordinary point, z.e., (4). The values of the
function at 2’ and 1’ are taken to be the same as in
2" and 1", points situated on the perpendicular to the
boundary, and where ¢ can be obtained by interpolation
between ¢, and ¢s, ¢, and ¢, respectively.

3) Iteration with formulas (4) and (5) increases the
proportion of lowest modes in the initial distribution ¢°.
Indeed, the iteration process consists essentially of solv-
ing V¥*'= — (k") %p° Assuming the initial distribution to
be expanded in the still' unknown eigenfunctions ¢;,

¢27.-.’¢n’...,as
¢ = cips + Capy + - - - + Cp - - - (6)
Then the “better” approximation ¢! is seen to be
(k) (k%)*
1= e S ST 7
¢ 01(k1)2¢1+ +c (kn)2¢ + (7

and, because k2 <ko?<ks% - - ., the coefficient of the
lowest mode ¢; has been proportionally increased as
compared to the coefficients of ¢,, ¢3, - - -, (and simi-
larly for the coefficient of ¢, as compared with ¢,.;,
Pni2, Puis, etc.). Convergence will then be ultimately to
the lowest mode ¢y, whatever the initial distribution ¢?9,
except if ¢1=0, 4.e., the initial distribution was orthog-
onal to ¢;. This was fortunately easy enough to ensure
in the present problem. Assume that one tries to con-
verge to the TE;, mode, the eigenfunction of which is
¢e. The lowest eigenfunction ¢; is a constant, 7.e., inde-
pendent of position. If one takes the initial distribution
to be symmetrical for Ox, antisymmetrical for Oy (as ¢,
should be), then ¢; is automatically zero, and conver-
gence will be to the desired eigenfunction ¢s. Similarly,
symmetry properties allow convergence for the TE(y
mode without any trouble. The TE;; mode, however,
must be treated carefully. It is symmetrical with respect
to Ox and Oy, so that ¢ is not automatically zero any-
more; coefficient ¢; is kept equal to zero only if, after
each iteration, the function ¢ is adjusted, by addition
of a constant, to have an average value equal to zero.



