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Semicircular Ridges in Rectangular Waveguid.es*

J. VAN BLADEL~ AND O. VON ROHR JR.~

Summary—The two-dimensional Hehnholtz equation is solved

in a rectangle having two semicircular projections in the center of its
broad faces. More particularly, the lowest two eigenvalues are deter-
mined for Nenmann% boundary condition, and the lowest eigenvalue
for Dirichlet’s boundary condition. The results are of interest in

various fields of physics, such as vibrations of a membrane, but are

of particular importance in the study of waveguide propagation. The

latter application is stressed in the article, in accordance with the

practical, importance of ridged waveguides.

lNTRoDtJcTION

, HE LOWEST mode of a rectangular waveguide,

T
Le., the TE1O mode, has a cutoff frequency~l equal

to c/2a, where c is the velocity of light in the

dielectric filling the guide (see Fig. 1). The next to

lowest mode is either the TEu mode, with cutoff fre-

quency c/2b, or the TE.zo, with cutoff frequency c/a, the

choice between these two modes being determined by

the aspect ratio b/a of the cross section. At most, the

ratio of the lowest two cutoff frequencies (termed mode

separation factor) is seen to be equal to two. Insertion

of rectangular ridges has the following effects :1,2

1)

2)

3)

A. decrease in the lowest cutoff frequency. This is

shown in Fig. 3, where, as in the rest of the article,

frequencies are measured in terms of c/2a. The

penetration of the ridge is expressed by the inser-

tion coefficient i, a quantity which is defined as

2d/b for the rectangular shape and 2R/b for the

semicircular shape. In particular, z’ takes the value

one when the ridges touch each other. It is seen

that the presence of the ridges makes the wave-

guide more compact for any given value of the

lowest cutoff frequency.

An increase in mode separation, as seen in Fig. 6.

Consequently, ‘(one-mode” propagation is possible

over a broader band of frequencies. This important

property has led to the use of ridged waveguide in

airborne weather-radar, where the two wave-

lengths of importance for precipitation detection,

viz., 3.2 cm and 5.6 cm, must be alternatively ac-

commodated by the same waveguide run, excite

a single mode, and still lie sufficiently far from cut-

off values.

An increase in power attenuation, as evidenced by

the two isolated points in Fig. 7. This is objection-

able for energy transmission purposes, although
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Fig. l—Rectangular and semicircular ridges,

desirable in the design of certain microwave

devices.1

An increase of the maximum electric field intensity

in the cross section, namely at the protruding

corners of the ridges. This lowers the maximum

power which can be transmitted without break-

down. To counteract this effect, corners of the

ridge are slightly rounded off in practice. The

question then naturally arises as to what would

be the effect of rounding off much more drastically,

i.e., what desirable and undesirable properties of

the rectangular ridge would result when one goes

over to the “cornerless” semicircular ridge. l[t is

the purpose of the present paper to give an answer
to that question.

NUMERICAL CALCULATIONS

The structure and properties of a waveguic!e mode are

determined by solving the following two-clirnensional

eigenvalue problems:3

3 S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley & Sons, Inc., New York, N. Y., 2nd cd., ch.
8; 1953.
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TE modes :V20 + kz~ = O with

&#J
= O on cross section contour (1)

CL

TM modes :V24 + k2$ = O with

@ = O on cross section contour. (2)

To each eigenvalue kz and eigenfunction ~ corresponds

a different mode, the cutoff frequency of which is equal

to ck/27r. The eigenvalue problem of the present article

has been solved by classical difference equation meth-

ods.4 Iteration methods have been found more suitable

than relaxation methods for the purpose. In brief, the

technique consists of starting with a small ridge radius,

a coarse net, and a distribution ~“ of net point values

corresponding to the unperturbed eigenfunction (i.e.,

relative to the rectangular boundary of same aspect

ratio, but without ridge). A first estimate of k2 is ob-

tained by the Rayleigh quotient

(3)

Better values of q5are obtained by going around the net

and replacing the initial values 00 by (see Fig. 2).
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Fig. 2—Points of the nets used in the iteration method,

for an ordinary point.

for a boundary point.

From this new set of values, kz is again computed from

(3), and the process is repeated until k’ converges. One

then goes over the finer nets, and computes the corre-

sponding values of k2. The final nets, in the present

work, contained some 400 points on the averages A

typical sequence of values for kz is 11. I/az, 8.3)a2, and

4 D. N. deG. Allen, “Relaxation Methods, ” McGraw-Hill Booli
Co., Inc., New York? N. Y., 1st cd., ch. 5, 6, and 12, 1954.

$ For more details, see O. Von Rohr’s thesis, submitted to the
Sever Inst. of Tech. in partial fulfillment of the requirements for the
degree of Master of Science in electrical engineering.
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Fig. 3—Cutoff frequencv of the lowest mode as a function of the
ridge penetration. The dashed curve is relative to a rectangular
ridge. The insert shows the lines of force of the electric field in the
waveguide cross section.
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Fig. 4—Cutoff frequency of the second lowest mode as a function of
ridge penetration. The inserts show the lines of force of the elec-
tric field in the waveguide cross section. The dashed curve, which
represents the third lowest mode for b/a =0.50, has been added to
allow interpolation of the TEZO characteristics between b/a= 0.50
and bja =0.

7.7/az for nets containing respectively 19, 97, and 425

points. The extrapolated value, in this particular exam-

ple, was taken to be 7.6/a2. The results of the computa-

tions are shown in Figs. 3 to 6. Each curve contains five

calculated points, and the over-all accuracy is believed

to be better than 2 per cent, which is satisfactory for

general engineering purposes. Computations were made

on a desk calculator, in the absence of a suitable auto-

matic computer. Interest is focused on the lowest two

TE modes, which determine the mode separation factor.

However, cutoff frequencies of the lowest TM mode

have been added, both because it was found desirable

to check whether they remain higher than those of the
investigated TE modes, and also because they repre-

sent the fundamental frequency of the clamped mem-

brane having the contour dkpicted in the lowest part of

Fig. 1. It will be noticed from Fig. 4 that the TEZO mode

is the second lowest mode for small aspect ratios. This

characteristic property was also displayed by the ridge-
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Fig. 5-–Cutoff frequency of the lowest TM mode as a function of
ridge penetration. The insert shows the lines of force of the
electric field in the waveguide crosssection.
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Fig. 7—Attenuation coefficient in terms of the attenuation coefficient
relative to a ridgeless waveguide of identical aspect ratio and cut-
off frequency. The curves are relative to the lowest moc~e. The
two isolated points refer to the relative attenuation for a rectangu-
lar ridge (.S/a = 0.25, b/a= 0.5) of insertion coefficients [).5 and
0.75 respectively.
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Fig. 8—Decrease of power handling capacity with ridge penetration.
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Fig. &-Mode separation factor as a function of insertion coefficient.
The dashed curve, added for comparison purposes, is relative to
a rectangular ridge.

less guide. The value of b/a, however, at which the

transition from TEO1 to TE20 takes place, is no longer

0.5, but is somewhat smaller. Notice also from Fig. 6

that the mode separation is optimum for an aspect ratio

of 0.4 approximately.
The knowledge of the eigenfunction @ relative to the

lowest mode makes it possible, by using classical for-

mu1as,3 to compute the attenuation and the power

handling capacity of the guide. The results are shown

in Figs. 7 and 8, It has been found useful, for comparison

purposes, to display the attenuation constant relatively

to that of a r,idgelesis rectangular guide of identical

material, aspect ratio, and cutoff frequency. The values

of the attenuation constant of the latter guide can be

found in the literature.’ The relative power handling

capacity curves indicate that, as the ri,dge penetration

increases, the lowest power level which will cause break-

down (i.e., create, somewhere in the cros~s section, an

electric field equal to the breakdown value) becomes

smaller and smaller.

Comparison Between R;dges

The best over-all properties, for a rectangular ridge

and an aspect ratio of 0.5, are obtained2 for s/a ~=0.25

(Fig. 1). An inspection of Fig. 6 indicates that such a

rectangular ridge ensures a better mode separation than

the semicircular ridge, for any given insertion coefllcient.

This is not surprising, for the rectangular ridge covers a

larger proportion of the cross section than its semi-

circular counterpart. The comparison, however, slhould

be made on a mode separation basis. For a, given mode

separation factor, the semicircular ridge is evidently

greatly superior as far as power handling capacity is

concerned. The latter is actually zero for a, rectangular
ridge (that is, if we take maximum local electric field as
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a. criterion). The relative attenuations are rough] y

identical for both ridges, as can easily be checked by

considering the two representative points of Fig. 7. It

consequently appears that the semicircular ridge has all

the favorable features of its rectangular counterpart,

and shows, in addition, considerable improvement in

power handling capacity.

.13@er%ental Verification

To obtain an idea of the accuracy of the curves, it was

decided to check two points where the accuracy was ex-

pected to be low. These points were relative to the

TEOI mode (the nets of which contained, in general,

fewer points than for the TEIO mode) and to a wave-

guide with aspect ratio b/a =0.466 (namely the RG-

49/U guide). The value of the cutoff wavelength, for

insertion coefficients of 0.5 and 0.75, was found, by in-

terpolation from the curves, to be 4,15 cm and 3.95 cm

respectively. The measured values were 4.25 cm and

4.08 cm, off by 2 or 3 per cent. This discrepancy is within

the limits of the expected 2 per cent over-all accuracy, if

one takes into account the additional error introduced

by the interpolation process.

APPENDIX

The following details about the computation method

are of interest:

1) Each mode has certain symmetry or antisymmetry

properties with respect to the Ox and Oy axes (Fig. 1).

The T&. mode, for example, is symmetrical for OX, and

antisymmetrical for Oy. These properties allow compu-

tations to be restricted to a quarter of the cross section.

2) The boundary condition ~ = O is imposed by

setting ~ltt = ~z,, = O in (.5). The condition d~/dn = O is

imposed by the use of Fox’s method, Gwhich consists of

computing the value at c’ (see Fig. 2) with the formula

‘ L. Fo~, “Solution by relaxation methods of plane potential
problems with mixed boundary conditions, ” Qwwt. AppJ. Math., vol.
2, pp. 251-257; October, 1944.

relative to an ordinary point, i.e., (4). The values of the

function at 2’ and 1‘ are taken to be the same as in
2,,, and ~1,1, points situated on the perpendicular to the

boundary, and where @can be obtained by interpolation

between $., and d,, & and @b,respectively.

3) Iteration with formulas (4) and (5) increases the

proportion of lowest modes in the initial distribution 00.

Indeed, the iteration process consists essentially of solv-

ing Vz#Jl = — (k”) 2@0.Assuming the initial distribution to

be expanded in the still’ unknown eigenfunctions @l,

b2,”””,&.”,as

4°=cldM +c242+”’”+c##J. +” . . . (6)

Then the “better” approximation g51is seen to be

@=c,~+,+...+cnYqn +... (,)
(h)2 (kn)z

and, because k12 < kzz < k32, . . . , the coefficient of the

lowest mode 41 has been proportionally increased as

compared to the coefficients of +2, @s, . . . , (and simi-
larly for the coefficient of @. as compared with &+l,

0.+2., @fi+s, etc.). Convergence will then be ultimately to
the lowest mode ~1, whatever the initial distribution ~0,

except if c1= O, i.e., the initial distribution was orthog-

onal to +1. This was fortunately easy enough to ensure

in the present problem. Assume that one tries to con-

verge to the TEIO mode, the eigenfunction of which is

& The lowest eigenfunction ~1 is a constant, i.e., inde-

pendent of position. If one takes the initial distribution

to be symmetrical for Ox, antisymmetrical for Oy (as 02

should be), then c1 is automatically zero, and conver-

gence will be to the desired eigenfunction & Similarly,

symmetry properties allow convergence for the TEO1

mode without any trouble. The TE20 mode, however,

must be treated carefully. It is symmetrical with respect

to Ox and Oy, so that c1 is not automatically zero any-

more; coefficient c1 is kept equal to zero only if, after

each iteration, the function @ is adjusted, by addition

of a constant, to have an average value equal to zero.


